LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2013
ST 2962-MODERN PROBABILITY THEORY

Date : 07/05/2013
Dept. No. \square Max. : 100 Marks
Time : 9:00-12:00
PART A
Answer all questions.
($10 \times 2=20$ marks)

1. Define measurable sets.
2. Show that for any distribution $\int_{-\infty}^{\infty}\left(1-\frac{x^{2}}{t^{2}}\right) d F(x) \leq \int_{-t}^{t} d F(x)$
3. Write the properties of a distribution function.
4. Define WLLN and SLLN.
5. Verify that existence of $r^{t h}$ absolute moment \Rightarrow the existence of absolute moment of all lower orders.
6. Prove that the Lebesgue outer measure of any countable set is zero.
7. In how many ways can 10 adults and 5 children stand in a circle so that no 2 children are next to each other.
8. State C_{r} - inequality.
9. Let $X_{n} \xrightarrow{P} X$ and $Y_{n} \xrightarrow{P} Y$ then show that $X_{n}+Y_{n} \xrightarrow{P} X+Y$.
10. State Liapounous Central Limit Theorem.

PART B

Answer any five questions.

(5 X $8=40$ marks)
11. If E_{1} and E_{2} are measurable so is $E_{1} \cup E_{2}$?
12. If $\left\{E_{n}\right\}$ is a sequence of measurable sets with $E_{n+1} C E_{n}$ for each n and let $\mu\left(E_{1}\right)$ is finite then μ (\lim $\left.E_{n}\right)=\lim \mu\left(E_{n}\right)$.
13. Let $\mathrm{X} \geq 0$ and let F be its distribution function, then show that

$$
\mathrm{E}(\mathrm{X})<\infty \Leftrightarrow \int_{o}^{\infty}[1-F(x)]<\infty
$$

14. Obtain the characteristic function of F where
$\mathrm{F}=\left\{\begin{array}{ccc}0 & ; & x<0 \\ \frac{x^{2}}{2} & ; & 0 \leq x<1 \\ 1-x+\frac{x^{2}}{2} & ; & 1 \leq x<2 \\ 1 & ; & x \geq 2\end{array}\right.$
Hence obtain the $r^{t h}$ moment of the random variableabout the origin.
15. Prove that $X_{m}-X_{n} \xrightarrow{P} 0 \Leftrightarrow X_{n} \xrightarrow{P} X$ where X is some random variable.
16. Prove that $X_{n} \xrightarrow{r} X \Rightarrow E\left|X_{n}\right|^{r} \rightarrow E|X|^{r}$
17. Determine whether WLLN holds for the following sequence of independent random variable :
a) $\mathrm{P}\left[X_{n}=\mathrm{n}\right]=\frac{1}{2} n^{-\lambda}=\mathrm{P}\left[X_{n}=-\mathrm{n}\right], \mathrm{P}\left[X_{n}=0\right]=1-n^{-\lambda}$
b) $P\left[X_{n}=n / \log n\right]=\log n / 2 n=P\left[X_{n}=-n / \log n\right]$
18. Show that if $X_{n} \xrightarrow{P} C \Rightarrow F_{n}(x) \rightarrow 0$ for $\mathrm{X}<\mathrm{c}$ and $F_{n}(x) \rightarrow 1$ for $\mathrm{X}>\mathrm{c}$ and conversely.

PART C

Answer two questions.

($2 \times 20=40$ marks)
19. a) Define convergence in probability. State and prove the necessary and sufficient condition for convergence in probability.
(10 marks)
b) Prove that $X_{n} \xrightarrow{\text { a.s. }} X \Rightarrow X_{n} \xrightarrow{P} X$ (5 marks)
c) If $X_{n}{ }^{\prime} s$ are independent and $X_{n} \xrightarrow{\text { a.s. }} 0$ then $\sum P\left[\left|X_{n}\right| \geq c\right]<\infty$ whatever be c > 0 , finite .

OR

d) State and Prove Lindberg - Levy central limit theorem.
e) Let $\left\{X_{n}\right\}$ be any sequence of variates then $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ and $Y_{n}=\frac{S_{n}-E\left(S_{n}\right)}{n}$. Derive the necessary and sufficient condition for the sequence $\left\{X_{n}\right\}$ to satisfy the WLLN is that $\mathrm{E}\left[\frac{Y_{n}^{2}}{1+Y_{n}^{2}}\right] \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. (10 marks)
20. a) State and Prove the properties of a distribution function .
(10 marks)
b) For the distribution function F given below

$$
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{ccc}
0 & ; & x<0 \\
x & ; & 0 \leq x<\frac{1}{2} \\
x^{2}+\frac{3}{8} & ; & \frac{1}{2} \leq x<\sqrt{\frac{5}{8}} \\
1 & ; & x \geq \sqrt{\frac{5}{8}}
\end{array}\right.
$$

Show that this is a distribution function. Also obtain the discontinuity points and decomposed into two distribution functions . (10 marks)

OR

c) State and Prove that mean deviation is least when taken about the median.
(10 marks)
d) State and Prove Holder's inequality and hence Schwarz inequality.
(10 marks)

