LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2013

ST 2962 - MODERN PROBABILITY THEORY

Date : 07/05/2013 Time : 9:00 - 12:00 Dept. No.

Max.: 100 Marks

Answer all questions.

PART A (10 x 2 = 20 marks)

- 1. Define measurable sets.
- 2. Show that for any distribution $\int_{-\infty}^{\infty} \left(1 \frac{x^2}{t^2}\right) dF(x) \le \int_{-t}^{t} dF(x)$
- 3. Write the properties of a distribution function.
- 4. Define WLLN and SLLN.
- 5. Verify that existence of r^{th} absolute moment \Rightarrow the existence of absolute moment of all lower orders.
- 6. Prove that the Lebesgue outer measure of any countable set is zero.
- 7. In how many ways can 10 adults and 5 children stand in a circle so that no 2 children are next to each other.
- 8. State C_r inequality.
- 9. Let $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$ then show that $X_n + Y_n \xrightarrow{P} X + Y$.
- 10. State Liapounous Central Limit Theorem.

PART B

Answer any five questions.

(5 X 8 = 40 marks)

- 11. If E_1 and E_2 are measurable so is $E_1 \cup E_2$?
- 12. If $\{E_n\}$ is a sequence of measurable sets with $E_{n+1} CE_n$ for each n and let $\mu(E_1)$ is finite then μ (lim E_n) = lim $\mu(E_n)$.
- 13. Let $X \ge 0$ and let F be its distribution function , then show that

 $E(X) < \infty \Leftrightarrow \int_{0}^{\infty} [1 - F(x)] < \infty$

14. Obtain the characteristic function of F where

$$F = \begin{cases} 0 & ; & x < 0 \\ \frac{x^2}{2} & ; & 0 \le x < 1 \\ 1 - x + \frac{x^2}{2} & ; & 1 \le x < 2 \\ 1 & ; & x \ge 2 \end{cases}$$

Hence obtain the r^{th} moment of the random variableabout the origin.

15. Prove that $X_m - X_n \xrightarrow{P} 0 \iff X_n \xrightarrow{P} X$ where X is some random variable.

16. Prove that $X_n \xrightarrow{r} X \Rightarrow E|X_n|^r \rightarrow E|X|^r$

17. Determine whether WLLN holds for the following sequence of independent random variable :

a)
$$P[X_n = n] = \frac{1}{2}n^{-\lambda} = P[X_n = -n], P[X_n = 0] = 1 - n^{-\lambda}$$

b) $P[X_n = n/\log n] = \frac{\log n}{2n} = P[X_n = -n/\log n]$

18. Show that if $X_n \xrightarrow{P} C \Rightarrow F_n(x) \to 0$ for X < c and $F_n(x) \to 1$ for X > c and conversely.

PART C

Answer two questions.

- 19. a) Define convergence in probability. State and prove the necessary and sufficient condition for convergence in probability. (10 marks)
 - b) Prove that $X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{P} X$ (5 marks) c) If X_n 's are independent and $X_n \xrightarrow{a.s.} 0$ then $\sum P[|X_n| \ge c] < \infty$ whatever be c > 0, finite. (5 marks)

OR

d) State and Prove Lindberg – Levy central limit theorem. (10 marks) e) Let $\{X_n\}$ be any sequence of variates then $S_n = X_1 + X_2 + \dots + X_n$ and $Y_n = \frac{S_n - E(S_n)}{n}$. Derive the necessary and sufficient condition for the sequence $\{X_n\}$ to satisfy the WLLN is that $E\left[\frac{Y_n^2}{1+Y_n^2}\right] \rightarrow 0$ as $n \rightarrow \infty$. (10 marks)

20. a) State and Prove the properties of a distribution function . (10 marks)b) For the distribution function F given below

(2 X 20 = 40 marks)

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ x & ; & 0 \le x < \frac{1}{2} \\ x^2 + \frac{3}{8} & ; & \frac{1}{2} \le x < \sqrt{\frac{5}{8}} \\ 1 & ; & x \ge \sqrt{\frac{5}{8}} \end{cases}$$

Show that this is a distribution function . Also obtain the discontinuity points and decomposed into two distribution functions . (10 marks)

OR

c) State and Prove that mean deviation is least when taken about the median.

 (10 marks)
 d) State and Prove Holder's inequality and hence Schwarz inequality.

 (10 marks)
 (10 marks)